Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Birth Defects Res ; 115(3): 302-317, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369700

RESUMO

BACKGROUND: Congenital anomalies (CA) are one of the leading causes of infant mortality and long-term disability. Many jurisdictions rely on health administrative data to monitor these conditions. Case definition algorithms can be used to monitor CA; however, validation of these algorithms is needed to understand the strengths and limitations of the data. This study aimed to validate case definition algorithms used in a CA surveillance system in British Columbia (BC), Canada. METHODS: A cohort of births between March 2000 and April 2002 in BC was linked to the Health Status Registry (HSR) and the BC Congenital Anomalies Surveillance System (BCCASS) to identify cases and non-cases of specific anomalies within each surveillance system. Measures of algorithm performance were calculated for each CA using the HSR as the reference standard. Agreement between both databases was calculated using kappa coefficient. The modified Standards for Reporting Diagnostic Accuracy guidelines were used to enhance the quality of the study. RESULTS: Measures of algorithm performance varied by condition. Positive predictive value (PPV) ranged between approximately 73%-100%. Sensitivity was lower than PPV for most conditions. Internal congenital anomalies or conditions not easily identifiable at birth had the lowest sensitivity. Specificity and negative predictive value exceeded 99% for all algorithms. CONCLUSION: Case definition algorithms may be used to monitor CA at the population level. Accuracy of algorithms is higher for conditions that are easily identified at birth. Jurisdictions with similar administrative data may benefit from using validated case definitions for CA surveillance as this facilitates cross-jurisdictional comparison.


Assuntos
Algoritmos , Lactente , Recém-Nascido , Humanos , Valor Preditivo dos Testes , Canadá/epidemiologia , Padrões de Referência , Bases de Dados Factuais
2.
Prenat Diagn ; 42(12): 1514-1524, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068917

RESUMO

OBJECTIVE: To evaluate the impact of implementing commercial whole exome sequencing (WES) and targeted gene panel testing in pregnancies with fetal anomalies. METHODS: A retrospective chart review of 124 patients with sequencing performed by commercial laboratories. RESULTS: The diagnostic yield of WES and panel testing was 21.5% and 26%, respectively, based on likely pathogenic (LP) or pathogenic (P) variants. Forty-two percent of exomes and 32% of panels analysed had one or more variants of uncertain significance (VUS) reported. A multidisciplinary in-depth review of the fetal phenotype, disease phenotype, variant data, and, in some patients, additional prenatal or postnatal investigations increased the diagnostic yield by 5% for exome analysis and 6% for panel analysis. CONCLUSIONS: The diagnostic yield of WES and panel testing combined was 23% based on LP and P variants. Although the reporting of VUS contributed to a 5% increase in diagnostic yield for WES and 6% for panels, the large number of VUS reported by commercial laboratories has significant resource implications. Our results support the need for greater adherence to the recommendations on the prenatal reporting of VUS and the importance of a multidisciplinary approach that brings together clinical and laboratory expertise in prenatal genetics and genomics.


Assuntos
Exoma , Laboratórios , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Sequenciamento do Exoma/métodos , Feto/anormalidades , Testes Genéticos/métodos
3.
HGG Adv ; 3(3): 100108, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35599849

RESUMO

Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.

4.
Am J Hum Genet ; 106(3): 405-411, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109420

RESUMO

Recurrent somatic variants in SPOP are cancer specific; endometrial and prostate cancers result from gain-of-function and dominant-negative effects toward BET proteins, respectively. By using clinical exome sequencing, we identified six de novo pathogenic missense variants in SPOP in seven individuals with developmental delay and/or intellectual disability, facial dysmorphisms, and congenital anomalies. Two individuals shared craniofacial dysmorphisms, including congenital microcephaly, that were strikingly different from those of the other five individuals, who had (relative) macrocephaly and hypertelorism. We measured the effect of SPOP variants on BET protein amounts in human Ishikawa endometrial cancer cells and patient-derived cell lines because we hypothesized that variants would lead to functional divergent effects on BET proteins. The de novo variants c.362G>A (p.Arg121Gln) and c. 430G>A (p.Asp144Asn), identified in the first two individuals, resulted in a gain of function, and conversely, the c.73A>G (p.Thr25Ala), c.248A>G (p.Tyr83Cys), c.395G>T (p.Gly132Val), and c.412C>T (p.Arg138Cys) variants resulted in a dominant-negative effect. Our findings suggest that these opposite functional effects caused by the variants in SPOP result in two distinct and clinically recognizable syndromic forms of intellectual disability with contrasting craniofacial dysmorphisms.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Adolescente , Criança , Pré-Escolar , Facies , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Crânio/anormalidades , Adulto Jovem
5.
Biol Psychiatry ; 87(2): 100-112, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443933

RESUMO

BACKGROUND: The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative. METHODS: We used clinically recommended guidelines to collect and interrogate the pathogenicity of 44 USP9X variants associated with neurodevelopmental disorders in males. Functional studies in patient-derived cell lines and mice were used to determine mechanisms of pathology. RESULTS: Twelve missense variants showed strong evidence of pathogenicity. We define a characteristic phenotype of the central nervous system (white matter disturbances, thin corpus callosum, and widened ventricles); global delay with significant alteration of speech, language, and behavior; hypotonia; joint hypermobility; visual system defects; and other common congenital and dysmorphic features. Comparison of in silico and phenotypical features align additional variants of unknown significance with likely pathogenicity. In support of partial loss-of-function mechanisms, using patient-derived cell lines, we show loss of only specific USP9X substrates that regulate neurodevelopmental signaling pathways and a united defect in transforming growth factor ß signaling. In addition, we find correlates of the male phenotype in Usp9x brain-specific knockout mice, and further resolve loss of hippocampal-dependent learning and memory. CONCLUSIONS: Our data demonstrate the involvement of USP9X variants in a distinctive neurodevelopmental and behavioral syndrome in male subjects and identify plausible mechanisms of pathogenesis centered on disrupted transforming growth factor ß signaling and hippocampal function.


Assuntos
Deficiências do Desenvolvimento , Deficiência Intelectual , Fator de Crescimento Transformador beta , Animais , Deficiências do Desenvolvimento/genética , Feminino , Haploinsuficiência , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Fenótipo , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
6.
Am J Med Genet A ; 182(3): 498-503, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840929

RESUMO

Renpenning syndrome (OMIM: 309500) is a rare X-linked disorder that causes intellectual disability, microcephaly, short stature, a variety of eye anomalies, and characteristic craniofacial features. This condition results from pathogenic variation of PQBP1, a polyglutamine-binding protein involved in transcription and pre-mRNA splicing. Renpenning syndrome has only been reported in affected males. Carrier females do not usually have clinical features, and in reported families with Renpenning syndrome, most female carriers exhibit favorable skewing of X-chromosome inactivation. We describe a female with syndromic features typical of Renpenning syndrome. She was identified by exome sequencing to have a de novo heterozygous c.459_462delAGAG mutation in PQBP1 (Xp11.23), affecting the AG hexamer in exon 4, which is the most common causative mutation in this syndrome. Streaky hypopigmentation of the skin was observed, supporting a hypothesized presence of an actively expressed, PQBP1 mutation-bearing X-chromosome in some cells. X-inactivation studies on peripheral blood cells demonstrated complete skewing in both the proband and her mother with preferential inactivation of the maternal X chromosome in the child. We demonstrated expression of the PQBP1 mutant transcript in leukocytes of the affected girl. Therefore, it is highly likely that the PQBP1 mutation arose from the paternal X chromosome.


Assuntos
Anormalidades Múltiplas/genética , Paralisia Cerebral/genética , Proteínas de Ligação a DNA/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Paralisia Cerebral/diagnóstico , Paralisia Cerebral/patologia , Criança , Cromossomos Humanos X/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Masculino , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/patologia , Mutação/genética , Inativação do Cromossomo X/genética
7.
Eur J Pediatr ; 178(8): 1207-1218, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31172278

RESUMO

Genetic disorders are one of the leading causes of infant mortality and are frequent in neonatal intensive care units (NICUs). Rapid genome-wide sequencing (GWS; whole genome or exome sequencing (ES)), due to its diagnostic capabilities and immediate impacts on medical management, is becoming an appealing testing option in the NICU setting. RAPIDOMICS was a trio-based rapid ES pilot study of 25 babies with suspected genetic disorders in the BC Women's Hospital NICU. ES and bioinformatic analysis were performed after careful patient ascertainment. Trio analysis was performed using an in-house pipeline reporting variants in known disease-causing genes. Variants interpreted by the research team as definitely or possibly causal of the infant's phenotype were Sanger validated in a clinical laboratory. The average time to preliminary diagnosis was 7.2 days. Sanger validation was pursued in 15 patients for 13 autosomal dominant and 2 autosomal recessive disorders, with an overall diagnostic rate (partial or complete) of 60%.Conclusion: In total, 72% of patients enrolled had a genomic diagnosis achieved through ES, multi-gene panel testing or chromosomal microarray analysis. Among these, there was an 83% rate of significant and immediate impact on medical decision-making directly related to new knowledge of the diagnosis. Health service implementation challenges and successes are discussed. What is Known: • Rapid genome-wide sequencing in the neonatal intensive care setting has a greater diagnostic hit rate and impact on medical management than conventional genetic testing. However, the impact of consultation with genetics and patient ascertainment requires further investigation. What is New: • This study demonstrates the importance of genetic consultation and careful patient selection prior to pursuing exome sequencing (ES). • In total, 15/25 (60%) patients achieved a diagnosis through ES and 18/25 (72%) through ES, multi-gene panel testing or chromosomal microarray analysis with 83% of those having immediate effects on medical management.


Assuntos
Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Unidades de Terapia Intensiva Neonatal , Terapia Intensiva Neonatal/métodos , Tomada de Decisão Clínica/métodos , Estado Terminal , Feminino , Aconselhamento Genético , Doenças Genéticas Inatas/genética , Humanos , Recém-Nascido , Masculino , Análise em Microsséries , Avaliação de Resultados em Cuidados de Saúde , Seleção de Pacientes , Projetos Piloto
8.
Front Neurol ; 10: 434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164858

RESUMO

Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged $8,344 per patient in the Retrospective group, suggesting savings of $5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important.

9.
Clin Genet ; 95(5): 607-614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30859550

RESUMO

Crisponi/cold-induced sweating syndrome (CS/CISS) is a rare autosomal recessive disorder characterized by a complex phenotype (hyperthermia and feeding difficulties in the neonatal period, followed by scoliosis and paradoxical sweating induced by cold since early childhood) and a high neonatal lethality. CS/CISS is a genetically heterogeneous disorder caused by mutations in CRLF1 (CS/CISS1), CLCF1 (CS/CISS2) and KLHL7 (CS/CISS-like). Here, a whole exome sequencing approach in individuals with CS/CISS-like phenotype with unknown molecular defect revealed unpredicted alternative diagnoses. This approach identified putative pathogenic variations in NALCN, MAGEL2 and SCN2A. They were already found implicated in the pathogenesis of other syndromes, respectively the congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome, the Schaaf-Yang syndrome, and the early infantile epileptic encephalopathy-11 syndrome. These results suggest a high neonatal phenotypic overlap among these disorders and will be very helpful for clinicians. Genetic analysis of these genes should be considered for those cases with a suspected CS/CISS during neonatal period who were tested as mutation negative in the known CS/CISS genes, because an expedited and corrected diagnosis can improve patient management and can provide a specific clinical follow-up.


Assuntos
Sequenciamento do Exoma , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Hiperidrose/diagnóstico , Hiperidrose/genética , Trismo/congênito , Morte Súbita , Facies , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Trismo/diagnóstico , Trismo/genética
10.
J Child Neurol ; 33(1): 106-113, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29246092

RESUMO

PAK3-related intellectual disability is caused by mutations in the gene encoding the p21-activated kinase (PAK) protein. It is characterized by mild to moderate cognitive impairment, micro/normocephaly, and a neurobehavioral phenotype characterized by short attention span, anxiety, restlessness, aggression, and self-abusive behaviors. The authors report a patient with a novel PAK3 mutation, who presented with intellectual disability, severe automutilation, and epilepsy. His magnetic resonance imaging changes were most likely secondary to lacerations from parenchymal contusions. His behavior was difficult to manage with behavior interventions or multiple medications. After finding low levels of dopamine and borderline low serotonin metabolites in the spinal fluid, treatment with low dose L-dopa/carbidopa and 5-hydroxytryptophan significantly improved his self-injurious behavior. This is the first case of PAK3-related intellectual disability presenting with severe self-injury with improvement following treatment. The patient's response to neurotransmitter replacement therapy raises the question if this treatment intervention might help other individuals suffering genetic syndromes and self-injurious behaviors.


Assuntos
5-Hidroxitriptofano/uso terapêutico , Carbidopa/uso terapêutico , Deficiência Intelectual/fisiopatologia , Levodopa/uso terapêutico , Psicotrópicos/uso terapêutico , Comportamento Autodestrutivo/tratamento farmacológico , Comportamento Autodestrutivo/fisiopatologia , Adolescente , Encéfalo/diagnóstico por imagem , Dopamina/metabolismo , Combinação de Medicamentos , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Masculino , Mutação , Comportamento Autodestrutivo/diagnóstico por imagem , Comportamento Autodestrutivo/genética , Serotonina/metabolismo , Síndrome , Quinases Ativadas por p21/genética
11.
Eur J Med Genet ; 61(5): 257-261, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29278735

RESUMO

Fanconi anemia is a rare chromosome instability disorder with a highly variable phenotype. In the antenatal and neonatal periods, the diagnosis is usually suggested by the presence of typical congenital abnormalities such as intrauterine growth retardation, microcephaly and radial ray defects. We report a newborn female with a prenatal diagnosis of Fanconi anemia, complementation group O (FANCO). Antenatal ultrasounds identified symmetrical intrauterine growth retardation, complex heart defect as well as brain anomalies, overlapping fingers and cleft lip and palate. Imperforate anus was detected after birth. Compound heterozygous RAD51C variants c. [571+5G > A]; [c.935G > A] were detected by prenatal whole exome sequencing and cellular hypersensitivity to DNA interstrand crosslinking agents (DEB, MMC) was confirmed after birth. With only one previously described homozygous RAD51C variant to date, our findings expand the phenotypic spectrum of FANCO and suggest it should be part of the antenatal differential diagnosis for trisomy 13 and 18, due to the presence of atypical findings such as cleft lip and palate, holoprosencephaly, growth restriction and overlapping fingers.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Holoprosencefalia/genética , Fenótipo , Células Cultivadas , Quebra Cromossômica , Fenda Labial/patologia , Fissura Palatina/patologia , Anemia de Fanconi/patologia , Feminino , Holoprosencefalia/patologia , Homozigoto , Humanos , Lactente , Mutação
12.
Brain ; 140(10): 2610-2622, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969385

RESUMO

Mutations of genes within the phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway are well known causes of brain overgrowth (megalencephaly) as well as segmental cortical dysplasia (such as hemimegalencephaly, focal cortical dysplasia and polymicrogyria). Mutations of the AKT3 gene have been reported in a few individuals with brain malformations, to date. Therefore, our understanding regarding the clinical and molecular spectrum associated with mutations of this critical gene is limited, with no clear genotype-phenotype correlations. We sought to further delineate this spectrum, study levels of mosaicism and identify genotype-phenotype correlations of AKT3-related disorders. We performed targeted sequencing of AKT3 on individuals with these phenotypes by molecular inversion probes and/or Sanger sequencing to determine the type and level of mosaicism of mutations. We analysed all clinical and brain imaging data of mutation-positive individuals including neuropathological analysis in one instance. We performed ex vivo kinase assays on AKT3 engineered with the patient mutations and examined the phospholipid binding profile of pleckstrin homology domain localizing mutations. We identified 14 new individuals with AKT3 mutations with several phenotypes dependent on the type of mutation and level of mosaicism. Our comprehensive clinical characterization, and review of all previously published patients, broadly segregates individuals with AKT3 mutations into two groups: patients with highly asymmetric cortical dysplasia caused by the common p.E17K mutation, and patients with constitutional AKT3 mutations exhibiting more variable phenotypes including bilateral cortical malformations, polymicrogyria, periventricular nodular heterotopia and diffuse megalencephaly without cortical dysplasia. All mutations increased kinase activity, and pleckstrin homology domain mutants exhibited enhanced phospholipid binding. Overall, our study shows that activating mutations of the critical AKT3 gene are associated with a wide spectrum of brain involvement ranging from focal or segmental brain malformations (such as hemimegalencephaly and polymicrogyria) predominantly due to mosaic AKT3 mutations, to diffuse bilateral cortical malformations, megalencephaly and heterotopia due to constitutional AKT3 mutations. We also provide the first detailed neuropathological examination of a child with extreme megalencephaly due to a constitutional AKT3 mutation. This child has one of the largest documented paediatric brain sizes, to our knowledge. Finally, our data show that constitutional AKT3 mutations are associated with megalencephaly, with or without autism, similar to PTEN-related disorders. Recognition of this broad clinical and molecular spectrum of AKT3 mutations is important for providing early diagnosis and appropriate management of affected individuals, and will facilitate targeted design of future human clinical trials using PI3K-AKT pathway inhibitors.


Assuntos
Deficiências do Desenvolvimento/genética , Megalencefalia/genética , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Encéfalo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Imunoprecipitação , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/patologia , Mutagênese Sítio-Dirigida/métodos , Fosfatidilinositóis/metabolismo , Transfecção
13.
Pediatr Neurol ; 75: 87-90, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28811059

RESUMO

BACKGROUND: Pathogenic heterozygous variants in the ATP1A2 gene have most commonly been associated with familial hemiplegic migraine. However, a wide spectrum of phenotypes that include alternating hemiplegia of childhood and epilepsy have been described. PATIENT DESCRIPTION: We describe a boy who presented at age three months with a complex phenotype that included epilepsy, nonepileptic paroxysmal events, and recurrent hemiplegia. Magnetic resonance imaging demonstrated unilateral cortical edema during a severe episode of hemiplegia that was followed by a persistent mild hemiparesis. RESULTS: Whole-exome sequencing identified a previously reported ATP1A2 missense variant (p.Arg548Cys) classified as pathogenic and a novel missense variant (p.Arg1008Trp) classified as a variant of uncertain significance. After this genetic diagnosis, treatment with flunarizine was initiated and no further episodes of hemiplegia have occurred. CONCLUSIONS: This is only the second report of compound heterozygosity of the ATP1A2 gene. It demonstrates the spectrum of paroxysmal neurological events that can arise as a result of ATP1A2 variants, with unique features overlapping alternating hemiplegia of childhood, hemiplegic migraine, and epilepsy. This child illustrates the diagnostic challenges that these disorders can present and the importance of genetic diagnosis in guiding management.


Assuntos
Epilepsia/genética , Hemiplegia/genética , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Pré-Escolar , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Hemiplegia/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo
14.
Am J Hum Genet ; 101(2): 300-310, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28777935

RESUMO

Massively parallel sequencing has revealed many de novo mutations in the etiology of developmental and epileptic encephalopathies (EEs), highlighting their genetic heterogeneity. Additional candidate genes have been prioritized in silico by their co-expression in the brain. Here, we evaluate rare coding variability in 20 candidates nominated with the use of a reference gene set of 51 established EE-associated genes. Variants within the 20 candidate genes were extracted from exome-sequencing data of 42 subjects with EE and no previous genetic diagnosis. We identified 7 rare non-synonymous variants in 7 of 20 genes and performed Sanger sequence validation in affected probands and parental samples. De novo variants were found only in SLC1A2 (aka EAAT2 or GLT1) (c.244G>A [p.Gly82Arg]) and YWHAG (aka 14-3-3γ) (c.394C>T [p.Arg132Cys]), highlighting the potential cause of EE in 5% (2/42) of subjects. Seven additional subjects with de novo variants in SLC1A2 (n = 1) and YWHAG (n = 6) were subsequently identified through online tools. We identified a highly significant enrichment of de novo variants in YWHAG, establishing their role in early-onset epilepsy, and we provide additional support for the prior assignment of SLC1A2. Hence, in silico modeling of brain co-expression is an efficient method for nominating EE-associated genes to further elucidate the disorder's etiology and genotype-phenotype correlations.


Assuntos
Proteínas 14-3-3/genética , Predisposição Genética para Doença , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Espasmos Infantis/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Transportador 2 de Aminoácido Excitatório , Exoma/genética , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Fenótipo , Adulto Jovem
15.
J Cutan Med Surg ; 21(6): 564-567, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28658971

RESUMO

Eruptive vellus hair cysts (EVHCs) often occur on the trunk and limbs. Facial involvement is uncommon. Autosomal dominant inheritance has been described, but associated extracutaneous anomalies have not. We describe a 4-patient kindred presenting with multiple facial EVHCs and an association of preauricular pits, lipomas, joint hypermobility, and cardiac defects. Histopathologic examination confirmed the diagnosis of EVHCs in 3 affected individuals. We propose that facial EVHCs may indicate the presence of an inherited autosomal dominant disorder with extracutaneous manifestations. Extracutaneous manifestations noted in the kindred have been sporadically described in association with steatocystoma multiplex (SM), a condition occasionally noted in the presence of EVHCs, further supporting an association between these disorders.


Assuntos
Cistos/complicações , Dermatoses Faciais/complicações , Doenças do Cabelo/complicações , Lipoma/complicações , Pré-Escolar , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Cistos/genética , Cistos/patologia , Dermatoses Faciais/genética , Dermatoses Faciais/patologia , Feminino , Doenças do Cabelo/genética , Doenças do Cabelo/patologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/genética , Humanos , Instabilidade Articular/complicações , Instabilidade Articular/genética , Lipoma/genética , Masculino , Linhagem
17.
Neurol Genet ; 2(6): e120, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27872899

RESUMO

OBJECTIVE: We describe 2 additional patients with early-onset epilepsy with a de novo FGF12 mutation. METHODS: Whole-exome sequencing was performed in 2 unrelated patients with early-onset epilepsy and their unaffected parents. Genetic variants were assessed by comparative trio analysis. Clinical evolution, EEG, and neuroimaging are described. The phenotype and response to treatment was reviewed and compared to affected siblings in the original report. RESULTS: We identified the same FGF12 de novo mutation reported previously (c.G155A, p.R52H) in 2 additional patients with early-onset epilepsy. Similar to the original brothers described, both presented with tonic seizures in the first month of life. In the first patient, seizures responded to sodium channel blockers and her development was normal at 11 months. Patient 2 is a 15-year-old girl with treatment-resistant focal epilepsy, moderate intellectual disability, and autism. Carbamazepine (sodium channel blocker) was tried later in her course but not continued due to an allergic reaction. CONCLUSIONS: The identification of a recurrent de novo mutation in 2 additional unrelated probands with early-onset epilepsy supports the role of FGF12 p.R52H in disease pathogenesis. Affected carriers presented with similar early clinical phenotypes; however, this report expands the phenotype associated with this mutation which contrasts with the progressive course and early mortality of the siblings in the original report.

18.
J Obstet Gynaecol Can ; 38(8): 742-762.e3, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27638987

RESUMO

OBJECTIVE: This guideline was written to update Canadian maternity care and reproductive healthcare providers on pre- and postconceptional reproductive carrier screening for women or couples who may be at risk of being carriers for autosomal recessive (AR), autosomal dominant (AD), or X-linked (XL) conditions, with risk of transmission to the fetus. Four previous SOGC- Canadian College of Medical Geneticists (CCMG) guidelines are updated and merged into the current document. INTENDED USERS: All maternity care (most responsible health provider [MRHP]) and paediatric providers; maternity nursing; nurse practitioner; provincial maternity care administrator; medical student; and postgraduate resident year 1-7. TARGET POPULATION: Fertile, sexually active females and their fertile, sexually active male partners who are either planning a pregnancy or are pregnant (preferably in the first trimester of pregnancy, but any gestational age is acceptable). OPTIONS: Women and their partners will be able to obtain appropriate genetic carrier screening information and possible diagnosis of AR, AD, or XL disorders (preferably pre-conception), thereby allowing an informed choice regarding genetic carrier screening and reproductive options (e.g., prenatal diagnosis, preimplantation genetic diagnosis, egg or sperm donation, or adoption). OUTCOMES: Informed reproductive decisions related to genetic carrier screening and reproductive outcomes based on family history, ethnic background, past obstetrical history, known carrier status, or genetic diagnosis. SOGC REPRODUCTIVE CARRIER SCREENING SUMMARY STATEMENT (2016): Pre-conception or prenatal education and counselling for reproductive carrier screening requires a discussion about testing within the three perinatal genetic carrier screening/diagnosis time periods, which include pre-conception, prenatal, and neonatal for conditions currently being screened for and diagnosed. This new information should be added to the standard reproductive carrier screening protocols that are already being utilized by the most responsible maternity provider through the informed consent process with the patient. (III-A; GRADE low/moderate) SOGC OVERVIEW OF RECOMMENDATIONS QUALITY AND GRADE: There was a strong observational/expert opinion (quality and grade) for the genetic carrier literature with randomized controlled trial evidence being available only for the invasive testing. Both the Canadian Task Force on Preventive Health Care quality and classification and the GRADE evidence quality and grade are provided. EVIDENCE: MEDLINE; PubMed; government neonatal screening websites; key words/common reproductive genetic carrier screened diseases/previous SOGC Guidelines/medical academic societies (Society of Maternal-Fetal Medicine [SMFM]; American College of Medical Genetics and Genomics; American College of Obstetricians and Gynecologists [ACOG]; CCMG; Royal College Obstetrics and Gynaecology [RCOG] [UK]; American Society of Human Genetics [ASHG]; International Society of Prenatal Diagnosis [ISPD])/provincial neonatal screening policies and programs; search terms (carrier screening, prenatal screening, neonatal genetic/metabolic screening, cystic fibrosis (CF), thalassemia, hemoglobinopathy, hemophilia, Fragile X syndrome (FXS), spinal muscular atrophy, Ashkenazi Jewish carrier screening, genetic carrier screening protocols, AR, AD, XL). SEARCH PERIOD: 10 years (June 2005-September 2015); initial search dates June 30, 2015 and September 15, 2015; completed final search January 4, 2016. Validation of articles was completed by primary authors RD Wilson and I De Bie. BENEFITS, HARMS, AND COST: Benefits are to provide an evidenced based reproductive genetic carrier screening update consensus based on international opinions and publications for the use of Canadian women, who are planning a pregnancy or who are pregnant and have been identified to be at risk (personal or male partner family or reproductive history) for the transmission of a clinically significant genetic condition to their offspring with associated morbidity and/or mortality. Harm may arise from having counselling and informed testing of the carrier status of the mother, their partner, or their fetus, as well as from declining to have this counselling and informed testing or from not having the opportunity for counselling and informed testing. Costs will ensue both from the provision of opportunities for counselling and testing, as well as when no such opportunities are offered or are declined and the birth of a child with a significant inherited condition and resulting morbidity/mortality occurs; these comprise not only the health care costs to the system but also the social/financial/psychological/emotional costs to the family. These recommendations are based on expert opinion and have not been subjected to a health economics assessment and local or provincial implementation will be required. GUIDELINE UPDATE: This guideline is an update of four previous joint SOGC-CCMG Genetic Screening Guidelines dated 2002, 2006, 2008, and 2008 developed by the SOGC Genetic Committee in collaboration with the CCMG Prenatal Diagnosis Committee (now Clinical Practice Committee). 2016 CARRIER SCREENING RECOMMENDATIONS.


Assuntos
Triagem de Portadores Genéticos , Serviços de Saúde Reprodutiva , Canadá , Triagem e Testes Direto ao Consumidor , Feminino , Aconselhamento Genético , Educação em Saúde , Pessoal de Saúde , Humanos , Masculino , Guias de Prática Clínica como Assunto
19.
N Engl J Med ; 374(23): 2246-55, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27276562

RESUMO

BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.).


Assuntos
Exoma , Testes Genéticos/métodos , Erros Inatos do Metabolismo/genética , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Erros Inatos do Metabolismo/diagnóstico , Fenótipo , Adulto Jovem
20.
Nat Genet ; 48(7): 777-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213289

RESUMO

We identified biallelic mutations in NANS, the gene encoding the synthase for N-acetylneuraminic acid (NeuNAc; sialic acid), in nine individuals with infantile-onset severe developmental delay and skeletal dysplasia. Patient body fluids showed an elevation in N-acetyl-D-mannosamine levels, and patient-derived fibroblasts had reduced NANS activity and were unable to incorporate sialic acid precursors into sialylated glycoproteins. Knockdown of nansa in zebrafish embryos resulted in abnormal skeletal development, and exogenously added sialic acid partially rescued the skeletal phenotype. Thus, NANS-mediated synthesis of sialic acid is required for early brain development and skeletal growth. Normal sialylation of plasma proteins was observed in spite of NANS deficiency. Exploration of endogenous synthesis, nutritional absorption, and rescue pathways for sialic acid in different tissues and developmental phases is warranted to design therapeutic strategies to counteract NANS deficiency and to shed light on sialic acid metabolism and its implications for human nutrition.


Assuntos
Doenças do Desenvolvimento Ósseo/patologia , Encéfalo/embriologia , Deficiências do Desenvolvimento/patologia , Mutação/genética , Oxo-Ácido-Liases/genética , Ácidos Siálicos/metabolismo , Peixe-Zebra/embriologia , Adulto , Idade de Início , Animais , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...